Joint Distribution of the First and Second Eigenvalues at the Soft Edge of Unitary Ensembles

نویسنده

  • P. J. FORRESTER
چکیده

The density function for the joint distribution of the first and second eigenvalues at the soft edge of unitary ensembles is found in terms of a Painlevé II transcendent and its associated isomonodromic system. As a corollary, the density function for the spacing between these two eigenvalues is similarly characterised.The particular solution of Painlevé II that arises is a double shifted Bäcklund transformation of the Hasting-McLeod solution, which applies in the case of the distribution of the largest eigenvalue at the soft edge. Our deductions are made by employing the hard-to-soft edge transition, involving the limit as the repulsion strength at the hard edge a → ∞, to existing results for the joint distribution of the first and second eigenvalue at the hard edge [14]. In addition recursions under a 7→ a + 1 of quantities specifying the latter are obtained. A Fredholm determinant type characterisation is used to provide accurate numerics for the distribution of the spacing between the two largest eigenvalues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Janossy densities for Unitary ensembles at the spectral edge

For a broad class of unitary ensembles of random matrices we demonstrate the universal nature of the Janossy densities of eigenvalues near the spectral edge, providing a different formulation of the probability distributions of the limiting second, third, etc. largest eigenvalues of the ensembles in question. The approach is based on a representation of the Janossy densities in terms of a syste...

متن کامل

GAUSSIAN UNITARY ENSEMBLE: THE EIGENVALUE POINT PROCESS 1. m−POINT CORRELATION FUNCTIONS All information concerning the distribution of eigenvalues in any of the classical ensembles

All information concerning the distribution of eigenvalues in any of the classical ensembles (GOE, GUE, Wishart) is encoded in the joint densities, for which we have obtained explicit formulas. Unfortunately, getting information out of the joint density requires integration, and many of the integrals that arise cannot be evaluated in any nice closed form. Nevertheless, it is possible to show th...

متن کامل

Extreme value statistics of eigenvalues of Gaussian random matrices.

We compute exact asymptotic results for the probability of the occurrence of large deviations of the largest (smallest) eigenvalue of random matrices belonging to the Gaussian orthogonal, unitary, and symplectic ensembles. In particular, we show that the probability that all the eigenvalues of an (NxN) random matrix are positive (negative) decreases for large N as approximately exp [-beta theta...

متن کامل

The Gaussian and Wishart Ensembles: Eigenvalue Densities

1.1. Orthogonal and Unitary Invariance. For the classical random matrix ensembles — the Gaussian Orthogonal, Unitary, and Symplectic Ensembles, the real and complex Wishart Ensembles, and the Circular Ensembles — the joint probability densities of the matrix entries, relative to Lebesgue measures, are functions only of the eigenvalues. This makes it possible to express the joint densities of th...

متن کامل

Parametric Spectral Statistics in Unitary Random Matrix Ensembles: From Distribution Functions to Intra-Level Correlations

We establish a general framework to explore parametric statistics of individual energy levels in unitary random matrix ensembles. For a generic confinement potential W (H), we (i) find the joint distribution functions of the eigenvalues of H and H = H + V for an arbitrary fixed V both for finite matrix size N and in the “thermodynamic” N → ∞ limit; (ii) derive manypoint parametric correlation f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013